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Abstract. In this paper, we are mainly concerned with the numerical solution of a
class of non-well posed semi-linear Cauchy problems for the heat equation. The noisy
data are given at the boundary. A stable numerical method based on mollification
scheme and marching method is developed to solve the proposed problem. The error
of this method is analyzed and some numerical examples are investigated.
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1 Introduction

Seeking the exact and approximate solutions of the nonlinear partial differential equa-
tions (PDE’s) play an important role in the nonlinear problems which may describe
different phenomenon. Many different analytical and numerical methods have been in-
vestigated to handle the nonlinear problems in literature (see [2-4], [6-8], [12, 13]).

This paper investigates a class of non-well posed semi-linear Cauchy problem for the
heat equation defined by

ut = uxx + φ(u), 0 < x < 1, t > 0, (1.1)

u(0, t) = α(t), t > 0, (1.2)

ux(0, t) = β(t), t > 0, (1.3)

where φ(u) =
∑n

i=0 aiu
i shows the polynomial nonlinear term and the coefficients ai; i =

0, 1, · · · , n are considered to be known parameters.
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The nonlinear problem (1.1)-(1.3) is a well-known mathematical model of many phys-
ical phenomenon such as heat conduction in high polymer systems [3]. A lot of popular
equations can be derived from Eq. (1.1). For instance when φ(u) = a1u + a2u

2, the
Eq. (1.1) becomes Fisher equation and when φ(u) = a1u+ a3u

3, the Eq. (1.1) becomes
Newell-Whitchead equation [3, 4, 7, 8, 12].

In sequence we limit our consideration to derive a stable solution for the problem
(1.1)-(1.3) with the presence of noise in the input data. A numerical marching scheme
based on discrete mollification will be presented and the convergence and stability of
this method will be proved.

For convenience we out line our procedure as follows:

In Section 2, we briefly review the mollification method. Section 3 contains our
interest problem and its solution procedure based on mollification method and space
marching scheme. In Section 4 the error analysis of the proposed numerical scheme is
stated. Finally in Section 5 to support the previous section’s results, some test problems
are considered.

2 A brief review of mollification method

Let δ > 0, p > 0 and Ap =
(∫ p

−pexp(−s2)ds
)−1

. The δ−mollification of an integrable

function is based on [9-13]

ρδ,p(x) =

{
Apδ

−1 exp
(
−x2

δ2

)
, |x| ≤ pδ,

0, |x| > pδ.

The δ−mollifier ρδ,p is nonnegative C∞(−pδ, pδ) function satisfying
∫ p
−ppδ(x)dx = 1

and δ is called the radius of mollification. For notational purposes, we will denote the
gaussian kernel by ρδ, dropping the dependence on the parameter p. We set I = [0, 1]
and Iδ = [pδ, 1− pδ]. Notice that the interval Iδ is nonempty whenever p < 1/2δ. If f is
a locally integrable function on I, we define its δ−mollification on I by the convolution

Jδf(x) = (ρδ ∗ f)(x) =
∫ ∞

−∞
ρδ(x− s)f(x)ds =

∫ x+pδ

x−pδ
ρδ(x− s)f(x)ds.

The δ−mollification satisfies interesting consistency and stability estimates. Some of
these results are listed as follows. The proofs of the statements in this section can be
found in [10].

Theorem 2.1. 1. If f(x) is uniformly Lipschitz on I, then there exists a constant
C, independent of δ, such that

∥ Jδf − f ∥∞,Iδ≤ Cδ. (2.1)
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2. If f(x) and f ε(x) are locally integrable functions on I and ∥ f(x)− fε(x) ∥∞,I≤ ε,
then there exists a constant C, independent of δ, such that

∥ Jδf − Jδf
ε ∥∞,Iδ ≤ ε, (2.2)

∥ (Jδf)
′ − (Jδf

ε)′ ∥∞,Iδ ≤ C
ε

δ
. (2.3)

3. If f(x) and fε(x) are locally integrable and uniformly Lipschitz on I with ∥ f(x)−
f ε(x) ∥∞≤ ε, then

∥ Jδf
ε − f ∥∞,Iδ≤ Cδ + ε. (2.4)

Moreover, if f ′ is uniformly Lipschitz on I, then

∥ (Jδf)
′ − f ′ ∥∞,Iδ≤ C

(
δ +

ε

δ

)
. (2.5)

2.1 Discrete mollification

Suppose K = {xj : j ∈ Z, 1 ≤ j ≤ M} ⊂ I, xj+1 − xj > d > 0, j ∈ Z and 0 ≤ x1 <
x2 < · · · < xM ≤ 1, where Z is the set of integers and d is a positive constant. Let
G = {gj}j∈Z be a discrete function defined on K and let sj = (1/2)(xj + xj+1), j ∈ Z.
The discrete δ−mollification of G may define by

JδG =
M∑
j=1

(∫ sj

sj−1

ρδ(x− s)ds

)
gj .

Notice that
∑M

j=1(
∫ sj
sj−1

ρδ(x − s)ds) =
∫ pδ
−pδρδ(s)ds = 1. Let ∆x = supj∈Z(xj+1 − xj).

Some results of the consistency, stability, and convergence of discrete δ-mollification are
listed as follows.

Theorem 2.2. 1. If g(x) is uniformly Lipschitz in I and G = {gj = g(xj) : j ∈ Z}
is the discrete version of g, then there exists a constant C independent of δ, such
that

∥ JδG− g ∥∞,Iδ≤ C(δ +∆x). (2.6)

Moreover, if g′(x) ∈ C0(I) and g′′(x) ∈ C0(I) then

∥ (JδG)′ − g′ ∥∞,Iδ≤ C

(
δ +

∆x

δ

)
. (2.7)

2. If the discrete functions G = {gj : j ∈ Z} and Gε = {gεj : j ∈ Z}, which are defined
on I, satisfy ∥ G−Gε ∥∞,Iδ≤ ε, then we have

∥ JδG− JδG
ε ∥∞,Iδ ≤ ε, (2.8)

∥ (JδG)′ − (JδG
ε)′ ∥∞,Iδ ≤ Cε

δ
. (2.9)
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3. If g(x) is uniformly Lipschitz on I, let G = {gj = g(xj) : j ∈ Z} be the discrete
version of g and Gε = {gεj : j ∈ Z} be the perturbed discrete version of g satisfying
∥ G−Gε ∥∞,Iδ≤ ε. then,

∥ JδG− Jδg ∥∞,Iδ ≤ C(δ +∆x), (2.10)

∥ JδG− g ∥∞,Iδ ≤ C(δ + ε+∆x). (2.11)

Moreover, if g′(x) ∈ C0(I) then

∥ (JδG
ε)

′ − (Jδg)
′ ∥∞,Iδ ≤ C

δ
(ε+∆x), (2.12)

∥ (JδG
ε)′ − g′ ∥∞,Iδ ≤ C

(
δ +

ε

δ
+

∆x

δ

)
. (2.13)

2.2 Numerical differentiation

Numerical differentiation is an ill-posed problem in the sense that small errors in the data
might induce large errors in the computed derivative. The method that we present here
uses the mollification method and allows for the stable reconstruction of the derivative
of a function which is known approximately at a discrete set of data points. Let Gε =
{gεj : j ∈ Z} be the perturbed discrete data for the function g. In order, to recover the
derivative g′ from discrete noisy data, instead of utilizing (d/dx)ρδ and convolution with
the data, computations are performed with a centered difference approximation of the
mollified derivative (d/dx)JδG

ε. Denote the centered difference operator by D, i.e.,

Df(x) =
f(x+∆x)− f(x−∆x)

2∆x
.

Following statements show some results regards to the stability and convergence of mol-
lified derivative.

Theorem 2.3. If g′ ∈ C1(R1) and G = {gj = g(xj) : j ∈ Z} is the discrete version of
g, with G, Gε satisfying ∥ G−Gε ∥∞,K≤ ε, then,

∥ DJδG
ε − (Jδg)

′ ∥∞ ≤ C

δ
(ε+∆x) + Cδ(∆x)2, (2.14)

∥ DJδG
ε − g′ ∥∞ ≤ C

(
δ +

ε

δ
+

∆x

δ

)
+ Cδ(∆x)2. (2.15)

Theorem 2.4. Suppose G = {gj : j ∈ Z} is a discrete function defined on a given set
K and Dδ

0(G) = D(JδG)(x) |K , then there exist a bound for this operator as

∥ Dδ
0(G) ∥∞,K≤ C

δ
∥ G ∥∞,K . (2.16)
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3 Regularized problem and marching scheme

In this section we will introduce a numerical marching scheme based on mollification
method to find the solution of the problem (1.1)-(1.3) under the assumption that α(t)
and β(t) are only known approximately as αϵ(t) and βϵ(t) such that ∥α(t)−αϵ(t)∥∞ ≤ ϵ
and ∥β(t) − βϵ(t)∥∞ ≤ ϵ. Because of the presence of the noise in the problem’s data,
we first stablize the problem using the mollification method. The regularized problem
is formulated as follows. Determine v(x, t), vx(x, t) ∈ [0, 1]× [0.1] satisfying

vt(x, t) = vxx(x, t) + φ(v(x, t)), 0 ≤ x < 1, t > 0, (3.1)

v(0, t) = Jδ0α(t), t > 0, (3.2)

vx(0, t) = Jδ∗0β(t), t > 0, (3.3)

where all δ-mollification are taken with respect to t and the radii of mollification, δ0, δ
∗
0

are chosen automatically using the GCV method [1, 10,11].

Now let M and N be positive integers, h = ∆x = 1/M and k = ∆t = 1/N be
the parameters of the finite differences discretization of I = [0, 1]. We introduce the
following discrete functions
Rn

i : the discrete computed approximations of v(ih, nk),
Wn

i : the discrete computed approximations of vt(ih, nk),
Qn

i : the discrete computed approximations of vx(ih, nk).

The algorithm of space marching scheme may be written as follows

1. Select δ0, δ
∗
0 .

2. Perform mollification of αε, βε in the interval [0, 1]. Set

Rn
0 = Jδ0α

ε(nk), Qn
0 = Jδ∗0β

ε(nk).

3. Perform mollified differentiation in time of Jδ0α
ε(nk). Set

Wn
0 = Dt(Jδ0α

ε(nk)).

4. Initialize i = 0. Do while i ≤ M − 1,

Rn
i+1 = Rn

i + hQn
i , (3.4)

Qn
i+1 = Qn

i + h(Wn
i − φ(Rn

i )), (3.5)

Wn
i+1 = Wn

i + hDt(Jδ∗i Q
n
i ). (3.6)

From now on, if Xn
i is a discrete function, we denote |Xi| = maxn |Xn

i |. We also consider
a smoothing assumption to discuss the stability and convergence of the scheme as follows

u(x, t) ∈ C2(I × I).
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4 Stability and convergence analysis

In this section, we analyze the stability and convergence of the proposed marching
scheme.

Theorem 4.1 (Stability of the Algorithm). There exists a constant C, such that

max{|RM |, |QM |, |WM |} ≤ Cmax{|Q0|, |W0|, |R0|m, |R0|m−1, . . . , |R0|, 1} (4.1)

Proof. Let |δ|−∞ = mini(δi, δ
∗
i ). Applying Theorem 2.4 yields

|Dt(Q
n
i )| ≤

C

|δ|−∞
|Qn

i |. (4.2)

Now by using (3.6) and (4.2) we also have

|Wn
i+1| ≤ |Wn

i |+ h
C

|δ|−∞
|Qn

i | ≤ (1 + hC1)max{|Wn
i |, |Qn

i |}, (4.3)

where C1 =
C

|δ|−∞
. Similarly using (3.4) and (3.5) yields

|Rn
i+1| ≤ |Rn

i |+ h|Qn
i | ≤ (1 + h)max{|Rn

i |, |Qn
i |}, (4.4)

|Qn
i+1| ≤ |Qn

i |+ h(|Wn
i |+ |am||(Rn

i )
m|+ |am−1||(Rn

i )
m−1|+ · · ·+ |a1||Rn

i |+ |a0|)
≤ (1 + (1 + |am|+ |am−1|+ · · ·+ |a0|)h)max{|Qn

i |, |Wn
i |, |Rn

i |m, |Rn
i |m−1, · · · , 1}.

(4.5)

Suppose

Cδ = max{1 + |am|+ |am−1|+ · · ·+ |a1|+ |a0|, C1}

from (4.3)-(4.5), we obtain

max{|Ri+1|, |Qi+1|, |Wi+1|} ≤ (1 + Cδ)max{|Qi|, |Wi|, |Rm
i , |Ri|m−1, . . . , |Ri|, 1},

and iterating this last inequality M times, we have

max{|Ri+1|, |Qi+1|, |Wi+1|} ≤ (1 + Cδ)
M max{|Q0|, |W0|, |Rm

0 , |R0|m−1, . . . , |R0|, 1},

which implies

max{|RM |, |QM |, |WM |} ≤ (1 +Cδ)(exp(Cδ))max{|Q0|, |W0|, |Rm
0 , |R0|m−1, . . . , |R0|, 1}.

(4.6)
This complete the proof of this theorem.

Theorem 4.2 (Formal convergence). For fixed δ as h, k and ε tend to zero, the discrete
mollified solution converges to the mollified exact solution restricted to the grid points.
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Proof. From the definitions of discrete error functions let

∆Rn
i = Rn

i − v(ih, nk), ∆Qn
i = Qn

i − vx(ih, nk), ∆Wn
i = Wn

i − vt(ih, nk).

Using Taylor series, we obtain some useful equations satisfied by the mollified solution
v, namely,

v((i+ 1)h, nk) = v(ih, nk) + hvx(ih, nk) +O(h2), (4.7)

vx((i+ 1)h, nk) = vx(ih, nk) + h(vt(ih, nk)− φ(v(ih, nk))) +O(h2), (4.8)

vt((i+ 1)h, nk) = vt(ih, nk) + h
d

dt
vx(ih, nk) +O(h2). (4.9)

On the other hand, one may write

∆Rn
i+1 = ∆Rn

i + (Rn
i+1 −Rn

i )− (v((i+ 1)h, nk)− v(ih, nk))

= ∆Rn
i + hQn

i − hvx(ih, nk) +O(h2)

= ∆Rn
i + h∆Qn

i +O(h2). (4.10)

∆Qn
i+1 = ∆Qn

i + (Qn
i+1 −Qn

i )− (vx((i+ 1)h, nk)− vx(ih, nk))

= ∆Qn
i + h((Wn

i − φ(v(ih, nk)))− h(vt(ih, nk)− φ(v(ih, nk))) +O(h2)

= ∆Qn
i + h∆Wn

i +O(h2). (4.11)

∆Wn
i+1 = ∆Wn

i + (Wn
i+1 −Wn

i )− (vt((i+ 1)h, nk)− vt(ih, nk))

= ∆Wn
i + hDt(Jδ∗i Q

n
i )− hvtx(ih, nk) +O(h2)

= ∆Wn
i + h(Dt(Jδ∗i Q

n
i )− vtx(ih, nk)) +O(h2). (4.12)

Now from equalities (4.10)-(4.12),using the error estimates of discrete mollification
from theorem 2.3 we have

|∆Rn
i+1| ≤ |∆Rn

i |+ h|∆Qn
i |+O(h2),

|∆Wn
i+1| ≤ |∆Wn

i |+ h|Dt(Jδ∗i Q
n
i )− vtx(ih, nk)|+O(h2),

≤ |∆Wi,n|+ h

(
C
|∆Qn

i |+ k

|δ|−∞
+ Cδ∗k

2

)
+O(h2).

|∆Qn
i | ≤ |∆Qn

i |+ h|∆Wn
i |+O(h2).

Suppose

∆i = max{|∆Rn
i |, |∆Wn

i |, |∆Qn
i |}, C0 = max

{
1,

C

|δ|−∞

}
, C1 = max

{
ck

|δ|−∞
+ Cδ∗k

2

}
Then we obtain

∆i+1 ≤ (1 + hC0)∆i + hC1 +O(h2)

≤ (1 + hC0)(∆i + C1) +O(h2), (4.13)
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and after L iterations
∆L ≤ exp(C0)(∆0 + C1). (4.14)

Moreover from

|∆Rn
0 | = |Rn

0 − v(0, nk)| = |Jδ0αε(nk)− v(0, nk)| ≤ C(ε+ k),

|∆Qn
0 | = |Qn

0 − vx(0, nk)| = |Jδ∗0β
ε(nk)− v(0, nk)| ≤ C(ε+ k),

|∆Wn
0 | = |Dt(Jδ0α

ε(nk))− vt(0, nk)| ≤
C

δ0
(ε+ k) + CδK

2,

we see that when ε, h, and k tend to 0, ∆0 and C1 tend to 0. Consequently (∆0 + C1)
tends to 0 and so does ∆L and this complete the proof of this theorem.

5 Numerical examples

In this section, we present some numerical results of interest. In all cases, without loss
of generality, we set p = 3. These values are appropriate because the difference between
ρδ’s when p = 3 and p > 3 is insignificant. The radii of mollification are always chosen
automatically using the mollification and GCV methods.
Discretized measured approximations of boundary data are modeled by adding random
errors to the exact data functions. For example, for the boundary data function h(x, t),
its discrete noisy version is generated by

hεj,n = h(xj , tn) + εj,n, j = 0, 1, . . . , N, n = 0, 1, . . . , T,

where the(εj,n)’s are Gaussian random variables with variance ε2.
The errors exact and approximate solution are measured by the relative weighted l2-norm
given by [

(1/(M + 1)(N + 1))ΣM
i=0 ΣN

j=0(v(ih, jl)−Rj
i )

2
]1/2

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0(v(ih, jl))

2
]1/2 .

Example 5.1. As the first example, consider following nonlinear Cauchy problem

ut = uxx + u(1− u)(4− u), 0 < x < 1, 0 < t < 1,

u(0, t) = 2 + 2 tanh(2t+ 1), 0 ≤ t ≤ 1,

ux(0, t) = 2
√
2(1− (tanh2(2t+ 1)), 0 ≤ t ≤ 1.

The exact solution for u(x, t) may be derived as

u(x, t) = 2 + 2 tanh(
√
2x+ 2t+ 1).

The figure 1 and table 1 show the comparison between exact and numerical solutions
and the relative l2 errors.
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Figure 1: Exact (right side) and numerical (left side) solutions.

Table 1: Relative l2 error norms for example 5.1

M N ε u ut ux
64 64 0.001 0.0072928 0.14286 0.25619
64 128 0.001 0.0072113 0.181 0.25686
64 256 0.001 0.007202 0.25634 0.2616
64 64 0.010 0.064593 0.28813 0.3452
64 128 0.010 0.06453 0.31147 0.3571
64 256 0.010 0.064523 0.32158 0.36106
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Figure 2: Exact (right side) and numerical (left side) solutions.

Table 2: Relative l2 error norms for example 5.2

M N ε u ut ux
64 64 0.001 0.014265 0.018557 0.050753
64 128 0.001 0.014332 0.013466 0.051521
64 256 0.001 0.014388 0.019122 0.052022
64 64 0.010 0.13033 0.078138 0.41362
64 128 0.010 0.13042 0.080611 0.41483
64 256 0.010 0.13048 0.081887 0.41545

Example 5.2. Consider following problem

ut = uxx − u2 − u3, 0 < x < 1, 0 < t < 1,

u(0, t) =
1

t+ 1
, 0 ≤ t ≤ 1,

ux(0, t) =
−
√
2

2(t+ 1)2
, 0 ≤ t ≤ 1.

The exact solution of this problem is

u(x, t) =
1

t+
√
2
2 x+ 1

.

The figure 2 and table 2 show the comparison between exact and numerical solutions
and the relative l2 errors.

Example 5.3. As the final test problem, consider following problem

ut = uxx + 6u(1− u), 0 < x < 1, 0 < t < 1,

u(0, t) =
1

(ex−5t + 1)2
, 0 ≤ t ≤ 1,

ux(0, t) =
−2ex−5t

(ex−5t + 1)3
, 0 ≤ t ≤ 1.
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Figure 3: Exact (right side) and numerical (left side) solutions.

Table 3: Relative l2 error norms for example 5.3

M N ε u ut ux
64 64 0.001 0.014804 0.043989 0.11316
64 128 0.001 0.014875 0.050383 0.11435
64 256 0.001 0.014907 0.071938 0.11853
64 64 0.010 0.13054 0.13202 1.0878
64 128 0.010 0.13063 0.13381 1.0863
64 256 0.010 0.13062 0.14599 1.0841

One may find the exact solution as

u(x, t) =
1

(1 + ex−5t)2
.

The figure 3 and table 3 show the comparison between exact and numerical solutions
and the relative l2 errors.

6 Conclusion

In this work, a class of semi-linear Cauchy problems is investigated. The noisy boundary
conditions are considered and a spatial regularization method based on mollification
scheme and space marching method is applied to solve the proposed non-well posed
problem. The error analysis in this study shows the stability and convergence of the
proposed method.
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