Mathematics 375 Differential Equations For Engineers and Scientists

Calendar Description: H(3-1.5T)

Definition, existence and uniqueness of solutions; first order and higher order equations and applications; Homogeneous systems; Laplace transform; partial differential equations of mathematical physics.

Prerequisite(s): Applied Mathematics 219 or Mathematics 277; or both Mathematics 267 and 177; or both Mathematics 253 and 114.

Antirequisite(s): Credit for more than one of Mathematics 375 or Applied Mathematics 307 or 311 will not be allowed.

Syllabus

<table>
<thead>
<tr>
<th>Topics</th>
<th>Number of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order differential equations</td>
<td>7</td>
</tr>
<tr>
<td>Higher order differential equations</td>
<td>7</td>
</tr>
<tr>
<td>Laplace transform</td>
<td>9</td>
</tr>
<tr>
<td>System of first order equations</td>
<td>6</td>
</tr>
<tr>
<td>Boundary value problems of mathematical physics</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL HOURS 37

See accompanying page for a detailed breakdown of instructional hours.

2014:06:13 Effective: Spring 2015
VS.jthom
MATH 375 Differential Equations for Engineers and Scientists

1. First Order Differential Equations:
 - Linear Equations; Method of integrating Factors.
 1 Hour
 - Separable Equations.
 1 Hour
 - Modeling with First Order Equations.
 3 Hours
 - Exact Equations and Integrating Factors.
 2 Hours

2. The nth Order Linear Equations:
 - Homogeneous Equations with Constant Coefficients.
 2 Hours
 - Nonhomogeneous Equations; Undetermined Coefficients / Variation of parameters
 2.5 Hours
 - Generalization to differential Equations of order n
 2.5 Hours

3. The Laplace Transform:
 - Definition of the Laplace Transform, properties
 3 Hours
 - Solution of Initial Value Problems.
 2 Hours
 - Differential Equations with Discontinuous Forcing Functions.
 2 Hours
 - Applications
 2 Hours

4. Systems of First Order Linear Equations:
 - Basic Theory of systems of first order linear equations
 1.5 Hours
 - Review of systems of linear equation, eigenvalues and eigenvectors
 1.5 Hours
 - Homogeneous linear systems with constant coefficients (only distinct eigenvalues case)
 2 Hours
 - Applications
 1 Hour

5. Boundary value problems of Mathematical Physics:
 - Introduction to Diffusion, wave, and Laplace equation. Boundary and initial conditions
 1 Hour
 - Fourier Series
 2 Hours
 - The method of separation of variables
 1 Hour
 - Solution to the one dimensional Heat equation
 1 Hour
 - Solution to the one dimensional wave equation
 1.5 Hours
 - Solution to the two dimensional Laplace equation
 1.5 Hours

Total: 37 Hours