
CALCULUS ON MANIFOLDS

J¾edrzej Śniatycki
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CHAPTER 1

ANALYTIC BACKGROUND

1 Open Sets

A point in Rn is an n-tuple x = (x1; :::; xn) of real numbers, called the coordinates of
the point x. For The Euclidean distance between every pair of points x = (x1; :::; xn)
and y = (y1; :::; yn) is given by

kx� yk =
p
(y1 � x1)2 + :::(yn � xn)2:

It is positive de�nite, that is kx� yk = 0 implies x = y. Moreover, it satis�es the
triangle inequality

kx� yk � kx� zk+ kz � yk (1)

for every x; y and z in Rn. An open ball in Rn centred at x with radius r > 0 is the
set

Bx;r = fy 2 Rn j ky � xk < rg
consisting of points such that their distance from x less than r. In the case when
n = 1; the Euclidean distance is given by the absolute value function, and open balls
reduce to open intervals. Namely, kx� yk =

p
(x� y)2 = jx� yj for every x; y 2 R,

and Bx;r = (x� r; x+ r) for every x 2 R and r > 0.
A subset of Rn is open if it is the union of open balls. In other words, U � Rn is

open if, for every x 2 U , there exists r > 0 such that Bx;r � U .
If fU�g�2A is a family of open subsets of Rn; parametrized by an arbitrary index

set A, then the union
S
�2A U� is open. The triangle inequality for the Euclidean

distance implies that if (U1; :::; Uk) is a �nite family of open sets, then their unionTn
i=1 Ui is also open.
A family fU�g�2A of open sets in Rn is called a basis of the topology of Rn if every

open subset of Rn can be written as the union
S
�2B U� for B � A. It follows from

the de�nition of open sets given above that the family of all open balls Bx;r is a basis
of the topology of Rn. Another convenient basis is the family of all open cubes

Cx;r = fy 2 Rn j
��xi � yi�� < r for i = 1; :::; ng:

A family fV�g�2B of open sets in Rn is called a subbasis of the topology of Rn if
every the family consisting of intersections of a �ninte number of sets in fV�g�2B is
a basis for a topology of Rn.
Let (xm) be a sequence of points in Rn. A point x 2 Rn is a limit of the sequence

(xm) if, for every " > 0, there exists N 2 R such that

kx� xmk < ", for all m > N .
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The above de�nition can be rephrased interms of open balls. Namely, a point x 2 Rn
is a limit of the sequence (xm) if, for every open ball Bx;" centred at x with radius
" > 0, there exists N 2 R such that xm 2 Bx;" for all m > N . In an analogous way
we could de�ne the limit in terms of open cubes, or any other basis of the topology
of Rn.
In the reformulation of criteria for a point x 2 Rn to be a limit of a sequence (xm)

given above, we used open balls Bx;" centered at x and open cubes Cx;" centered at
x. We could have also used other families of open sets containing x. In the following,
it will be convenient to use the term an open neighbourhood of x for an open set
containong x.
If a sequence (xm) has a limit, we say that it is a convergent sequence. The triangle

inequality implies that the limit of a convergent sequence is unique. If x is the limit
of a sequence (xm), we write x = limm!1 xm or xm ! x as m ! 1. If xm has
components (x1m; :::; x

n
m) and x has components (x

1; :::; xn) then xm ! x as m ! 1
if and only if xim ! xi as m!1 for every i = 1; :::; n.
Complements of open sets are called closed sets. In other words, C � Rn is closed

if its complement
RnnC = fx 2 Rn j x =2 Cg

is open. Closed sets can also be charactrized in terms of sequences. Namely, a subset
C of Rn is closed if and only if, for every convergent sequence (xm) of points in C,
its limit limm!1 xm is in C.
It follows from the de�nition that, if fC�g�2A is a family of closed subsets of Rn

parametrized by an arbitrary index set A, then the intersection
T
�2AC� is closed.

Similarly, if (C1; :::; Ck) is a �nite family of open sets, then their union
Sn
i=1Ci is also

closed.

Exercises

Problem 1.1 Prove the triangle inequality kx� yk � kx� zk + kz � yk for every
x; y and z in Rn.

Problem 1.2 Let (xm) be a sequence and x a point in Rn: Show that the following
statements are equivalent.

1. For every " > 0, there exists N 2 R such that kx� xmk < ", for all
m > N .

2. For every open ball Bx;", there exists N 2 R such that xm 2 Bx;" for all
m > N:

3. For every open cube Cx;", there exists N 2 R such that xm 2 Cx;" for all
m > N:

4. For every open neighbourhood U of x there exists N 2 R such that xm 2 U
for all m > N:
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Problem 1.3 Prove that the limit of a convergent sequence in Rn is unique.

Problem 1.4 Show that a subset C of Rn is closed if and only if the limit of every
convergent sequence of points in C is contained in C.

2 Smooth Functions

2.1 Globally de�ned functions

For a function f : Rn ! R ; the value of f at a point x = (x1 ; :::; xn) 2 Rn will be
denoted by f(x) or f(x1 ; :::; xn). For brevity, we shall also use the notation x 7�! f(x).
A function f on Rn is continuous at a point x 2 Rn if, for every " > 0, there exists
� > 0 such that jf(y)� f(x)j < " for all y 2 Bx;": : We say that a function f on Rn
is continuous if it is continuous at every point of Rn.
For every f : Rn ! R, a point x = (x1 ; :::; xn) 2 Rn and i = 1; :::; n, the partial

derivative of f at (x1 ; :::; xn) with respect to xi is

@f

@xi
(x1 ; :::; xn) = lim

h!0

f(x1 ; :::; xi�1; xi + h; xi+1; :::; xn)� f(x1 ; :::; xn)
h

:

In order to have a consise notation for higher order derivatives of a function f on Rn,
for every n-tupple � = (�1; :::; �n) of non�negative integers, we set

j�j =
nX
i=1

�i;

and
@�

@x�
f =

@j�j

@x�11 :::@x
�n
n

:

If �1 = ::: = �n = 0, then we let
@�

@x�
f = f .

Thus, a function f : Rn ! R is smooth if @�

@x�
f is continuous for every n-tupple

� = (�1; :::; �n) of non-negative integers.
We denote the space of smooth functions on Rn by C1(Rn).

Proposition 1 If f1; :::; fk are in C1(Rn) and F : Rk ! R is smooth, then the
composition F (f1; :::; fk) : Rn ! R is smooth.

Proof. This is the consequence of of the chain rule. �

Since addition and multiplication are smooth operations, it follows from Proposition
1 that C1(Rn) is closed with respect of the operations of addition and multiplication.
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Example 1 A function h : R! R de�ned by

h(x) =

�
e�

1
x for x > 0
0 for x � 0

�
is smooth.

Proof. Continuity of h(x) for x 6= 0 is obvious. Continuity at x = 0 follows from
the fact that limx!0+ e

�1=x = 0: For x > 0, the derivative of e�1=x of order m is the
product of e�1=x and a polynomial in 1

x
: By l�Hôpital�s rule limx!0+(e

�1=x=xm) = 0
for every m > 0. Hence, all derivatives of h(x) are continuous. �

Proposition 2 Let C � Rn be closed and x = (x1; :::; xn) 2 RnnC: Then there exists
f 2 C1(Rn) such that f(x) = 1 and f(y) = 0 for every y 2 C.

Proof. Since U = RnnC is open, it follows that there exists � > 0 such that the
ball Bx;� is contained in U . This means that the intersection Bx;� \ V is empty. Let
h 2 C1(R) be the function given in Example 1. By Proposition 1, the function

f(y1; :::; yn) = e
1=�2h

�
�2 � ((y1 � x1)2 + :::+ (yn � xn)2)

�
(2)

is smooth, and it vanishes for y = (y1; :::; yn) =2 Bx;�: In particular, f(y) = 0 for all
y 2 V . Moreover, f(x) = e1=�2h(�2) = e1=�2e�1=�2 = 1: �

The closure of a set S � Rn is the smallest closed set �S containing S: For each
f 2 C1(Rn), the support of f is the closure of the set fx 2 Rn j f(x) 6= 0g. Note that
a function may vanish at some points in its support. For example, the support of the
function h de�ned in Example 1 is the closed half-line [0;1) = fx 2 R j x � 0g, and
h(0) = 0:
The content of Proposition 2 is usually summarized by a statement that smooth

functions on Rn separate points from closed sets. We could strengthen the statement
of Proposition 2 by requiring that f(x) = 1 and the support of f has empty intersec-
tion with V . A function f satisfying these properties can be obtained by replacing �
in equation 2 by �=2:

2.2 Locally de�ned functions

Let U be an open subset of Rn. Given a function f de�ned on U; and x 2 U , we can
determine the continuity of f at x, and the existence of partial derivatives of f at x
in terms of well de�ned operations on f . We say that f : U ! R is smooth if it is
continuous and all its partial derivatives are continuous. We denote by C1(U) the
space of all smooth functions on U .
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If h 2 C1(Rn) then the restriction hjU of h to U is in C1(U). The converse
need not hold. For example, let n = 1; and U be the open interval (0; 1). Then the
function f : (0; 1) ! R, given by f(x) = 1=x, is in C1(U), but it has no extension
to a smooth function on R.
For each i = 1; :::; n, we denote by qi : U ! R the restriction to U of the i0th

coordinate function on Rn. In other words, qi((x1; :::; xn)) = xi for all (x1; :::; xn) 2 U .
Clearly, the coordinate functions qi are smooth.

Proposition 3 A function f : U ! R is in C1(U) if, for every x 2 U; there exists
an open subset W of Rn containing x; and a function ~f 2 C1(Rn) such that
the restrictions of f and h to W \ U coincide.

Proof. Let f 2 C1(U). Since U is open in Rn, for x 2 U , there exists � > 0
such that Bx;� � U . Then, 0 < �

4
< �

2
and, by Problem 2 , there exists a function

h 2 C1(Rn) such that hjBx;�=4 = 1 and h(x) = 0 if x =2 Bx;�=2. Let ~f : Rn ! R be
given by

~f(x) =

�
h(x)f(x) for x 2 U

0 for x =2 U

�
:

Then ~f 2 C1(Rn) and ~fjBx;�=4 = fjBx;�=4. �
Exercises

Problem 2.1 Show that the function f : R! R, de�ned by

f(x) =

�
x sin( 1

x
) for x 6= 0

0 for x = 0

�
;

is continuous but not smooth.

Problem 2.2 Let 0 < " < �. For every x 2 Rn, construct a function f 2 C1(Rn)
such that f(y) = 1 for every y 2 Bx;", and f(y) = 0 if y =2 Bx;�:

3 The Inverse Function Theorem

A smooth map F : Rn ! Rm consists of m functions f 1; :::; fm in C1(Rn) such that
F (x) = (f 1(x); :::; fm(x)) for every x 2 Rn: The matrix-valued function (@f i=@xj) on
Rn is called called the Jacobi matrix of F . For each x 2 Rn, the derivative DF (x)
of F at x is the linear map from Rn to Rm given by value at x of the Jacobi matrix
of F: A number M 2 R is an upper bound for DF (x) if kDF (x)uk � M kuk for all
u 2 Rn: The operator norm of the matrix DF (x) is the least upper bound kDF (x)k
of DF (x). which exists because the set of upper bounds for DF (x) is bounded from
below by zero. Hence,

kDF (x)uk � kDF (x)k kuk (3)

for all u 2 Rn.
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Proposition 4 If F = (f 1; :::; fm) is a smooth map from an open subset U of Rn
with values in an open subset V of Rm; such that there exists a smooth map
H = (h1; :::; hn) : V ! U such that F �H = idU (the identity on U) and
H�F = idV , then m = n:

Proof. Di¤erentiating equations F �H = idU and H�F = idV we get with the help
of the Chain Rule

mX
k=1

�
@f i

@xk

�
(x)

�
@hk

@yj

�
(y) = �ij and

nX
j=1

�
@hk

@yj

�
(y)

�
@f j

@xi

�
(x) = �ki ;

where x 2 U let y = F (x) 2 V; and

�ij =

�
1 if i = j
0 if i 6= j (4)

is the Kronecker symbol. It follows that the Jacobi matrix of H is the inverse of the
Jacobi matrix of F . Since an invertible matrix is square, it follows that m = n. �

The Inverse Function Theorem Let U be an open subset of Rn and F : U ! Rn
be smooth. If the derivative DF is invertible at a point x0 2 U , then there
exists an open neigbourhood V of x0 contained in U such that F (V ) is open in
Rn, the restriction FjV of F to V is a one-to-one map of V onto F (V ) with a
smooth inverse (FjV )�1 : F (V )! V .

An important consequence of the Inverse Function Theorem is the Implicit Function
Theorem stated below. Here, we use the canonical isomorphism

Rn � Rm ! Rn+m : ((x1; :::; xn); (y1; :::; ym)) 7�! (x1; :::; xn; y1; :::; ym):

The Implicit Function Theorem Let (x0; y0) be a point in an open subset U of
Rn+m � Rn � Rm and

F : U ! Rm : (x1; :::; xn; y1; :::; ym) 7�! (f 1(x; y); :::; fm(x; y))

be a smooth map such that

F (x0; y0) = 0 and det(@fa=@xi)(x0; y0) 6= 0:

Then, there exists a open neighbourhood V of x0 in Rn an open neighbourhood
W of y0 in Rm such that V �W � U and there exists a smooth mapH : V ! W
such that, for every (x; y) 2 V �W;

F (x; y) = 0 if and only if y = H(x):
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4 Di¤erential equations of �rst order

In this section we state existence, uniqueness and smooth dependence on initial data
of a solution of a Cauchy problem

_x(t) = F (x(t)), and x(t0) = x0; (5)

where t 7�! x(t) is a curve in Rn, _x(t) = dx(t)
dt

and F 2 C1(Rn).

Existence and uniqueness For each x0 2 Rn, there exists a maximal unique solu-
tion x = fx0(t) of the Cauchy problem (5) de�ned in an open interval (T�(x0); T+(x0)
where �1 � T�(x0) < 0 < T+(x0) � 1. If

If T�(x0) 6= �1, then kx(t)k ! 1 as t! T�(x0) from above.

If T+(x0) 6= +1, then kx(t)k ! 1 as t! T+(x0) from below.

Smoothness For each t 2 (T�(x0); T+(x0)), the function x0 ! fx0(t) is of class C
1:
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