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CHAPTER 1
ANALYTIC BACKGROUND

1 Open Sets

A point in R" is an n-tuple z = (x!, ..., 2") of real numbers, called the coordinates of

the point x. For The Euclidean distance between every pair of points z = (z', ..., 2")
and y = (y!,...,y") is given by

lz =yl = V(' =212 + .. (y — am)2.

It is positive definite, that is ||z — y|| = 0 implies x = y. Moreover, it satisfies the
triangle inequality

[ =yl <llz—==2[] + Iz =yl (1)

for every z,y and z in R”. An open ball in R" centred at x with radius r > 0 is the
set
Bop ={y € R" | |ly —zf| <7}

consisting of points such that their distance from x less than r. In the case when
n = 1, the Euclidean distance is given by the absolute value function, and open balls
reduce to open intervals. Namely, ||z — y|| = +/(z — y)? = |z — y| for every z,y € R,
and B, , = (r —r,xz +r) for every x € R and r > 0.

A subset of R" is open if it is the union of open balls. In other words, U C R" is
open if, for every x € U, there exists r > 0 such that B,, C U.

If {U,}aca is a family of open subsets of R", parametrized by an arbitrary index
set A, then the union |J,., U, is open. The triangle inequality for the Euclidean
distance implies that if (Uy,...,Uy) is a finite family of open sets, then their union
i, U; is also open.

A family {U, }aca of open sets in R™ is called a basis of the topology of R™ if every
open subset of R" can be written as the union (J, 5 U, for B C A. It follows from
the definition of open sets given above that the family of all open balls B, , is a basis
of the topology of R". Another convenient basis is the family of all open cubes

Cor ={y e R"| |mZ — yi| <rfori=1,..,n}

A family {Vs}gep of open sets in R™ is called a subbasis of the topology of R™ if
every the family consisting of intersections of a fininte number of sets in {Vs}sep is
a basis for a topology of R".

Let (z,,) be a sequence of points in R™. A point = € R™ is a limit of the sequence
() if, for every € > 0, there exists N € R such that

|lx — x| <e, for allm > N.
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The above definition can be rephrased interms of open balls. Namely, a point z € R"
is a limit of the sequence (x,,) if, for every open ball B, . centred at = with radius
e > 0, there exists N € R such that z,, € B, for all m > N. In an analogous way
we could define the limit in terms of open cubes, or any other basis of the topology
of R™.

In the reformulation of criteria for a point x € R™ to be a limit of a sequence (x,,)
given above, we used open balls B, . centered at  and open cubes C, . centered at
x. We could have also used other families of open sets containing z. In the following,
it will be convenient to use the term an open neighbourhood of x for an open set
containong .

If a sequence (z,,) has a limit, we say that it is a convergent sequence. The triangle
inequality implies that the limit of a convergent sequence is unique. If = is the limit
of a sequence (z,,), we write x = lim,, o Ty O Z,, — x as m — oo. If x,, has
components (z1 ,...,2") and x has components (z',...,2") then x,, — x as m — oo
if and only if !, — 2% as m — oo for every i = 1, ..., n.

Complements of open sets are called closed sets. In other words, C' C R" is closed
if its complement

R\C={zeR" |z ¢ C}

is open. Closed sets can also be charactrized in terms of sequences. Namely, a subset
C of R™ is closed if and only if, for every convergent sequence (z,,) of points in C,
its limit lim,,, .. ,, is in C.

It follows from the definition that, if {C,}aca is a family of closed subsets of R”
parametrized by an arbitrary index set A, then the intersection (,., Cy is closed.
Similarly, if (Ci, ..., Cy) is a finite family of open sets, then their union J;_, C; is also
closed.

Exercises

Problem 1.1 Prove the triangle inequality ||z — y|| < ||z — 2|| + ||z — || for every
x,y and z in R"™.

Problem 1.2 Let (x,,) be a sequence and = a point in R”. Show that the following
statements are equivalent.

1. For every € > 0, there exists N € R such that ||z —z,,| < e, for all
m > N.

2. For every open ball B, ., there exists N € R such that z,, € B, . for all
m > N.

3. For every open cube C, ., there exists N € R such that z,, € C,. for all
m > N.

4. For every open neighbourhood U of x there exists N € R such that z,, € U
for all m > N.



Problem 1.3 Prove that the limit of a convergent sequence in R” is unique.

Problem 1.4 Show that a subset C' of R" is closed if and only if the limit of every
convergent sequence of points in C' is contained in C'.

2 Smooth Functions

2.1 Globally defined functions

For a function f : R" — R |, the value of f at a point z = (x*,...,2") € R" will be
denoted by f(x) or f(x',...,x"). For brevity, we shall also use the notation x — f(x).
A function f on R" is continuous at a point x € R" if, for every ¢ > 0, there exists
d > 0 such that |f(y) — f(z)| < ¢ for all y € B, .. . We say that a function f on R
s continuous if it is continuous at every point of R".

For every f : R" — R, a point z = (2',...,2") € R" and i = 1, ..., n, the partial
derivative of f at (z!,...,z") with respect to z* is

af (IJ, ’xn) — hm f(fl:l, ..,’:L‘i—l’l'i + h7$i+1’ 7:En) _ f(:L‘l, ---,$n>‘
83:1 h—0 h

In order to have a consise notation for higher order derivatives of a function f on R",
for every n-tupple oo = (a, ..., ;) of non—negative integers, we set

n
|a| = E Qs
i=1
and
o« olel
et %) .
Oz 0.0z

If oy =... = a,, =0, then we let

aOL
axaf - f’
Thus, a function f : R® — R is smooth if a&% f is continuous for every n-tupple
a = (aq, ..., a,) of non-negative integers.
We denote the space of smooth functions on R” by C*°(R").

Proposition 1 If f,..., f; are in C*®(R") and F : R¥ — R is smooth, then the
composition F'(fi, ..., fr) : R" — R is smooth.

Proof. This is the consequence of of the chain rule. O

Since addition and multiplication are smooth operations, it follows from Proposition
1 that C°°(R™) is closed with respect of the operations of addition and multiplication.
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Example 1 A function h : R — R defined by
1
_J ez forz>0
h<$)_{ 0 for z <0 }
is smooth.

Proof. Continuity of h(x) for 2 # 0 is obvious. Continuity at z = 0 follows from
the fact that lim, o+ e~/* = 0. For = > 0, the derivative of e~ /% of order m is the
product of e™'/* and a polynomial in 1. By 'Hopital’s rule lim, o+ (e~*//2™) = 0
for every m > 0. Hence, all derivatives of h(x) are continuous. 0

Proposition 2 Let C' C R" be closed and x = (21, ..., 2") € R"\C. Then there exists
f € C°(R") such that f(z) =1 and f(y) =0 for every y € C.

Proof. Since U = R"\C is open, it follows that there exists 6 > 0 such that the
ball B, ; is contained in U. This means that the intersection B, ; NV is empty. Let
h € C*(R) be the function given in Example 1. By Proposition 1, the function

2 n n
Fyrsyn) = /70 (8 = ((y' —a')? + .+ (y" = 2")?)) (2)
is smooth, and it vanishes for y = (y1,...,yn) ¢ B.s. In particular, f(y) = 0 for all
y € V. Moreover, f(z) = e/ n(6%) = /e 10" = 1. O

The closure of a set S C R” is the smallest closed set S containing S. For each
f € C°(R™), the support of f is the closure of the set {x € R" | f(x) # 0}. Note that
a function may vanish at some points in its support. For example, the support of the
function h defined in Example 1 is the closed half-line [0,00) = {z € R | z > 0}, and
h(0) = 0.

The content of Proposition 2 is usually summarized by a statement that smooth
functions on R" separate points from closed sets. We could strengthen the statement
of Proposition 2 by requiring that f(x) = 1 and the support of f has empty intersec-
tion with V. A function f satisfying these properties can be obtained by replacing ¢
in equation 2 by 6/2.

2.2 Locally defined functions

Let U be an open subset of R". Given a function f defined on U, and x € U, we can
determine the continuity of f at x, and the existence of partial derivatives of f at x
in terms of well defined operations on f. We say that f : U — R is smooth if it is
continuous and all its partial derivatives are continuous. We denote by C*°(U) the
space of all smooth functions on U.



If h € C*(R") then the restriction hjy of h to U is in C*°(U). The converse
need not hold. For example, let n = 1, and U be the open interval (0,1). Then the
function f : (0,1) — R, given by f(z) = 1/z, is in C*°(U), but it has no extension
to a smooth function on R.

For each i = 1,...,n, we denote by ¢ : U — R the restriction to U of the 'th
coordinate function on R™. In other words, ¢'((x!,...,2")) = z* for all (z*,...,2") € U.
Clearly, the coordinate functions ¢* are smooth.

Proposition 3 A function f : U — R is in C*(U) if, for every x € U, there exists
an open subset W of R™ containing x, and a function f € C°°(R") such that
the restrictions of f and h to W N U coincide.

Proof. Let f € C*°(U). Since U is open in R", for x € U, there exists 6 > 0
such that B, ; € U. Then, 0 < g < g and, by Problem 2 , there exists a function

h € C=(R") such that hyp,,, = 1 and h(z) = 0 if 2 ¢ Bysp. Let f:R" — R be

given by

= | Wx)f(x) forz e U

f(:c){ 0 forx ¢ U '
Then _]Z: E COO(RTL) and .}Z‘Bx’(;/4 = f‘Bm,§/4' |:|
Exercises

Problem 2.1 Show that the function f : R — R, defined by

~f asin(2) for z £ 0
f(x)—{ 0 for z =0 }’

is continuous but not smooth.

Problem 2.2 Let 0 < ¢ < §. For every € R", construct a function f € C*(R")
such that f(y) =1 for every y € B, ., and f(y) =0 if y ¢ B,..

3 The Inverse Function Theorem

A smooth map F : R" — R™ consists of m functions f!, ..., f™ in C*°(R"™) such that
F(x) = (fY(x), ..., f™(x)) for every x € R™. The matrix-valued function (9f%/dz7) on
R™ is called called the Jacobi matriz of F. For each x € R", the derivative DF(x)
of F' at x is the linear map from R"” to R™ given by value at x of the Jacobi matrix
of F. A number M € R is an upper bound for DF(z) if | DF(x)u|| < M ||u|| for all
u € R™. The operator norm of the matrix DF(x) is the least upper bound ||DF(x)||
of DF(z). which exists because the set of upper bounds for DF(x) is bounded from
below by zero. Hence,

IDE(z)ull < [[DF ()]} [ull (3)

for all u € R™.



Proposition 4 If F' = (f!,..., f™) is a smooth map from an open subset U of R"
with values in an open subset V' of R™, such that there exists a smooth map
H = (h',..,h") : V — U such that FeH = idy (the identity on U) and
He F = idy, then m = n.

Proof. Differentiating equations Fe H = idy and He F' = idy we get with the help
of the Chain Rule

> (55) @ (g};k ) ) =8 and Z (25’“) )(55) @ -t

k=1

where x € U let y = F(x) € V, and
. [ 1ifi=
5ﬂ'{01fz'7éj (4)

is the Kronecker symbol. It follows that the Jacobi matrix of H is the inverse of the
Jacobi matrix of F'. Since an invertible matrix is square, it follows that m =n. 0O

The Inverse Function Theorem Let U be an open subset of R" and F' : U — R"
be smooth. If the derivative DF' is invertible at a point xy € U, then there
exists an open neigbourhood V' of xy contained in U such that F'(V') is open in
R”, the restriction Fjy of F' to V is a one-to-one map of V' onto F(V') with a
smooth inverse (Fy)™': F(V) — V.

An important consequence of the Inverse Function Theorem is the Implicit Function
Theorem stated below. Here, we use the canonical isomorphism

R™ x R™ — R™™ : ((2,...,2"), (v, ..., y™)) — (2, .., 2™, y*, .. ™).

The Implicit Function Theorem Let (zg,yy) be a point in an open subset U of
R™™ = R™ x R™ and

F:U— R™: (o, ...,2" 9" . y™) — (Y (2,9), ... f™(2,y))
be a smooth map such that
F(z0,%0) = 0 and det(afa/axi)(iﬂo;yo) # 0.

Then, there exists a open neighbourhood V' of x( in R" an open neighbourhood
W of yg in R™ such that V' x W C U and there exists a smooth map H : V — W
such that, for every (z,y) € V. x W,

F(z,y) =0 if and only if y = H(z).



4 Differential equations of first order

In this section we state existence, uniqueness and smooth dependence on initial data
of a solution of a Cauchy problem

x(t) = F(z(t)), and x(to) = xo, (5)

where t — x(t) is a curve in R", i(t) = dflsf) and F' € C=(R").

Existence and uniqueness For each xy € R”, there exists a maximal unique solu-
tion z = f,,(t) of the Cauchy problem (5) defined in an open interval (7" (xg), T’ (zo)
where —oo0 < T (x9) < 0 < T’y () < 0. If

If T (xg) # —oo, then ||z(t)|| — oo ast — T_(zg) from above.
If T (xg) # +oo, then ||z(t)|| — oo ast — T} (zg) from below.

Smoothness For each ¢t € (T_(xo), T (x¢)), the function zg — f,, () is of class C*°.



