CALCULUS ON MANIFOLDS

Jędrzej Śniatycki Department of Mathematics and Statistics University of Calgary Calgary, Alberta, Canada

August 31, 2009

CHAPTER 1 ANALYTIC BACKGROUND

1 Open Sets

A point in \mathbb{R}^n is an *n*-tuple $x = (x^1, ..., x^n)$ of real numbers, called the *coordinates* of the point x. For The Euclidean distance between every pair of points $x = (x^1, ..., x^n)$ and $y = (y^1, ..., y^n)$ is given by

$$||x - y|| = \sqrt{(y^1 - x^1)^2 + \dots (y^n - x^n)^2}.$$

It is positive definite, that is ||x - y|| = 0 implies x = y. Moreover, it satisfies the triangle inequality

$$||x - y|| \le ||x - z|| + ||z - y|| \tag{1}$$

for every x, y and z in \mathbb{R}^n . An open ball in \mathbb{R}^n centred at x with radius r > 0 is the set

$$B_{x,r} = \{ y \in \mathbb{R}^n \mid ||y - x|| < r \}$$

consisting of points such that their distance from x less than r. In the case when n = 1, the Euclidean distance is given by the absolute value function, and open balls reduce to open intervals. Namely, $||x - y|| = \sqrt{(x - y)^2} = |x - y|$ for every $x, y \in \mathbb{R}$, and $B_{x,r} = (x - r, x + r)$ for every $x \in R$ and r > 0.

A subset of \mathbb{R}^n is *open* if it is the union of open balls. In other words, $U \subseteq \mathbb{R}^n$ is open if, for every $x \in U$, there exists r > 0 such that $B_{x,r} \subseteq U$.

If $\{U_{\alpha}\}_{\alpha \in A}$ is a family of open subsets of \mathbb{R}^n , parametrized by an arbitrary index set A, then the union $\bigcup_{\alpha \in A} U_{\alpha}$ is open. The triangle inequality for the Euclidean distance implies that if $(U_1, ..., U_k)$ is a finite family of open sets, then their union $\bigcap_{i=1}^n U_i$ is also open.

A family $\{U_{\alpha}\}_{\alpha \in A}$ of open sets in \mathbb{R}^n is called a *basis of the topology* of \mathbb{R}^n if every open subset of \mathbb{R}^n can be written as the union $\bigcup_{\alpha \in B} U_{\alpha}$ for $B \subseteq A$. It follows from the definition of open sets given above that the family of all open balls $B_{x,r}$ is a basis of the topology of \mathbb{R}^n . Another convenient basis is the family of all open cubes

$$C_{x,r} = \{ y \in \mathbb{R}^n \mid |x^i - y^i| < r \text{ for } i = 1, ..., n \}.$$

A family $\{V_{\beta}\}_{\beta \in B}$ of open sets in \mathbb{R}^n is called a *subbasis of the topology* of \mathbb{R}^n if every the family consisting of intersections of a fininte number of sets in $\{V_{\beta}\}_{\beta \in B}$ is a basis for a topology of \mathbb{R}^n .

Let (x_m) be a sequence of points in \mathbb{R}^n . A point $x \in \mathbb{R}^n$ is a limit of the sequence (x_m) if, for every $\varepsilon > 0$, there exists $N \in \mathbb{R}$ such that

$$||x - x_m|| < \varepsilon$$
, for all $m > N$.

The above definition can be rephrased in terms of open balls. Namely, a point $x \in \mathbb{R}^n$ is a limit of the sequence (x_m) if, for every open ball $B_{x,\varepsilon}$ centred at x with radius $\varepsilon > 0$, there exists $N \in \mathbb{R}$ such that $x_m \in B_{x,\varepsilon}$ for all m > N. In an analogous way we could define the limit in terms of open cubes, or any other basis of the topology of \mathbb{R}^n .

In the reformulation of criteria for a point $x \in \mathbb{R}^n$ to be a limit of a sequence (x_m) given above, we used open balls $B_{x,\varepsilon}$ centered at x and open cubes $C_{x,\varepsilon}$ centered at x. We could have also used other families of open sets containing x. In the following, it will be convenient to use the term an *open neighbourhood* of x for an open set containing x.

If a sequence (x_m) has a limit, we say that it is a *convergent sequence*. The triangle inequality implies that the limit of a convergent sequence is unique. If x is the limit of a sequence (x_m) , we write $x = \lim_{m \to \infty} x_m$ or $x_m \to x$ as $m \to \infty$. If x_m has components $(x_m^1, ..., x_m^n)$ and x has components $(x^1, ..., x^n)$ then $x_m \to x$ as $m \to \infty$ if and only if $x_m^i \to x^i$ as $m \to \infty$ for every i = 1, ..., n.

Complements of open sets are called *closed* sets. In other words, $C \subseteq \mathbb{R}^n$ is closed if its complement

$$\mathbb{R}^n \backslash C = \{ x \in \mathbb{R}^n \mid x \notin C \}$$

is open. Closed sets can also be characterized in terms of sequences. Namely, a subset C of \mathbb{R}^n is closed if and only if, for every convergent sequence (x_m) of points in C, its limit $\lim_{m\to\infty} x_m$ is in C.

It follows from the definition that, if $\{C_{\alpha}\}_{\alpha \in A}$ is a family of closed subsets of \mathbb{R}^n parametrized by an arbitrary index set A, then the intersection $\bigcap_{\alpha \in A} C_{\alpha}$ is closed. Similarly, if $(C_1, ..., C_k)$ is a finite family of open sets, then their union $\bigcup_{i=1}^n C_i$ is also closed.

Exercises

- **Problem 1.1** Prove the triangle inequality $||x y|| \le ||x z|| + ||z y||$ for every x, y and z in \mathbb{R}^n .
- **Problem 1.2** Let (x_m) be a sequence and x a point in \mathbb{R}^n . Show that the following statements are equivalent.
 - 1. For every $\varepsilon > 0$, there exists $N \in \mathbb{R}$ such that $||x x_m|| < \varepsilon$, for all m > N.
 - 2. For every open ball $B_{x,\varepsilon}$, there exists $N \in \mathbb{R}$ such that $x_m \in B_{x,\varepsilon}$ for all m > N.
 - 3. For every open cube $C_{x,\varepsilon}$, there exists $N \in \mathbb{R}$ such that $x_m \in C_{x,\varepsilon}$ for all m > N.
 - 4. For every open neighbourhood U of x there exists $N \in \mathbb{R}$ such that $x_m \in U$ for all m > N.

Problem 1.3 Prove that the limit of a convergent sequence in \mathbb{R}^n is unique.

Problem 1.4 Show that a subset C of \mathbb{R}^n is closed if and only if the limit of every convergent sequence of points in C is contained in C.

2 Smooth Functions

2.1 Globally defined functions

For a function $f : \mathbb{R}^n \to \mathbb{R}$, the value of f at a point $x = (x^1, ..., x^n) \in \mathbb{R}^n$ will be denoted by f(x) or $f(x^1, ..., x^n)$. For brevity, we shall also use the notation $x \mapsto f(x)$. A function f on \mathbb{R}^n is continuous at a point $x \in \mathbb{R}^n$ if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(y) - f(x)| < \varepsilon$ for all $y \in B_{x,\varepsilon}$. We say that a function f on \mathbb{R}^n is continuous if it is continuous at every point of \mathbb{R}^n .

For every $f : \mathbb{R}^n \to \mathbb{R}$, a point $x = (x^1, ..., x^n) \in \mathbb{R}^n$ and i = 1, ..., n, the partial derivative of f at $(x^1, ..., x^n)$ with respect to x^i is

$$\frac{\partial f}{\partial x^i}(x^1, ..., x^n) = \lim_{h \to 0} \frac{f(x^1, ..., x^{i-1}, x^i + h, x^{i+1}, ..., x^n) - f(x^1, ..., x^n)}{h}.$$

In order to have a consist notation for higher order derivatives of a function f on \mathbb{R}^n , for every *n*-tupple $\alpha = (\alpha_1, ..., \alpha_n)$ of non–negative integers, we set

$$|\alpha| = \sum_{i=1}^{n} \alpha_i,$$

and

$$\frac{\partial^{\alpha}}{\partial x^{\alpha}}f = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}...\partial x_n^{\alpha_n}}$$

If $\alpha_1 = \dots = \alpha_n = 0$, then we let

$$\frac{\partial^{\alpha}}{\partial x^{\alpha}}f = f.$$

Thus, a function $f : \mathbb{R}^n \to R$ is smooth if $\frac{\partial^{\alpha}}{\partial x^{\alpha}} f$ is continuous for every *n*-tupple $\alpha = (\alpha_1, ..., \alpha_n)$ of non-negative integers.

We denote the space of smooth functions on \mathbb{R}^n by $C^{\infty}(\mathbb{R}^n)$.

Proposition 1 If $f_1, ..., f_k$ are in $C^{\infty}(\mathbb{R}^n)$ and $F : \mathbb{R}^k \to \mathbb{R}$ is smooth, then the composition $F(f_1, ..., f_k) : \mathbb{R}^n \to \mathbb{R}$ is smooth.

Proof. This is the consequence of the chain rule.

Since addition and multiplication are smooth operations, it follows from Proposition 1 that $C^{\infty}(\mathbb{R}^n)$ is closed with respect of the operations of addition and multiplication.

Example 1 A function $h : \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) = \left\{ \begin{array}{c} e^{-\frac{1}{x}} \text{ for } x > 0\\ 0 \text{ for } x \le 0 \end{array} \right\}$$

is smooth.

Proof. Continuity of h(x) for $x \neq 0$ is obvious. Continuity at x = 0 follows from the fact that $\lim_{x\to 0^+} e^{-1/x} = 0$. For x > 0, the derivative of $e^{-1/x}$ of order m is the product of $e^{-1/x}$ and a polynomial in $\frac{1}{x}$. By l'Hôpital's rule $\lim_{x\to 0^+} (e^{-1/x}/x^m) = 0$ for every m > 0. Hence, all derivatives of h(x) are continuous.

Proposition 2 Let $C \subset \mathbb{R}^n$ be closed and $x = (x^1, ..., x^n) \in \mathbb{R}^n \setminus C$. Then there exists $f \in C^{\infty}(\mathbb{R}^n)$ such that f(x) = 1 and f(y) = 0 for every $y \in C$.

Proof. Since $U = \mathbb{R}^n \setminus C$ is open, it follows that there exists $\delta > 0$ such that the ball $B_{x,\delta}$ is contained in U. This means that the intersection $B_{x,\delta} \cap V$ is empty. Let $h \in C^{\infty}(\mathbb{R})$ be the function given in Example 1. By Proposition 1, the function

$$f(y_1, ..., y_n) = e^{1/\delta^2} h\left(\delta^2 - \left((y^1 - x^1)^2 + ... + (y^n - x^n)^2\right)\right)$$
(2)

is smooth, and it vanishes for $y = (y_1, ..., y_n) \notin B_{x,\delta}$. In particular, f(y) = 0 for all $y \in V$. Moreover, $f(x) = e^{1/\delta^2} h(\delta^2) = e^{1/\delta^2} e^{-1/\delta^2} = 1$.

The closure of a set $S \subseteq \mathbb{R}^n$ is the smallest closed set \overline{S} containing S. For each $f \in C^{\infty}(\mathbb{R}^n)$, the support of f is the closure of the set $\{x \in \mathbb{R}^n \mid f(x) \neq 0\}$. Note that a function may vanish at some points in its support. For example, the support of the function h defined in Example 1 is the closed half-line $[0, \infty) = \{x \in \mathbb{R} \mid x \geq 0\}$, and h(0) = 0.

The content of Proposition 2 is usually summarized by a statement that smooth functions on \mathbb{R}^n separate points from closed sets. We could strengthen the statement of Proposition 2 by requiring that f(x) = 1 and the support of f has empty intersection with V. A function f satisfying these properties can be obtained by replacing δ in equation 2 by $\delta/2$.

2.2 Locally defined functions

Let U be an open subset of \mathbb{R}^n . Given a function f defined on U, and $x \in U$, we can determine the continuity of f at x, and the existence of partial derivatives of f at x in terms of well defined operations on f. We say that $f: U \to \mathbb{R}$ is smooth if it is continuous and all its partial derivatives are continuous. We denote by $C^{\infty}(U)$ the space of all smooth functions on U. If $h \in C^{\infty}(\mathbb{R}^n)$ then the restriction $h_{|U}$ of h to U is in $C^{\infty}(U)$. The converse need not hold. For example, let n = 1, and U be the open interval (0, 1). Then the function $f: (0, 1) \to \mathbb{R}$, given by f(x) = 1/x, is in $C^{\infty}(U)$, but it has no extension to a smooth function on \mathbb{R} .

For each i = 1, ..., n, we denote by $q^i : U \to \mathbb{R}$ the restriction to U of the *i*'th coordinate function on \mathbb{R}^n . In other words, $q^i((x^1, ..., x^n)) = x^i$ for all $(x^1, ..., x^n) \in U$. Clearly, the coordinate functions q^i are smooth.

Proposition 3 A function $f: U \to \mathbb{R}$ is in $C^{\infty}(U)$ if, for every $x \in U$, there exists an open subset W of \mathbb{R}^n containing x, and a function $\tilde{f} \in C^{\infty}(\mathbb{R}^n)$ such that the restrictions of f and h to $W \cap U$ coincide.

Proof. Let $f \in C^{\infty}(U)$. Since U is open in \mathbb{R}^n , for $x \in U$, there exists $\delta > 0$ such that $B_{x,\delta} \subseteq U$. Then, $0 < \frac{\delta}{4} < \frac{\delta}{2}$ and, by Problem 2, there exists a function $h \in C^{\infty}(\mathbb{R}^n)$ such that $h_{|B_{x,\delta/4}} = 1$ and h(x) = 0 if $x \notin B_{x,\delta/2}$. Let $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ be given by

$$\tilde{f}(x) = \left\{ \begin{array}{c} h(x)f(x) \text{ for } x \in U \\ 0 \text{ for } x \notin U \end{array} \right\}.$$

Then $\tilde{f} \in C^{\infty}(\mathbb{R}^n)$ and $\tilde{f}_{|B_{x,\delta/4}} = f_{|B_{x,\delta/4}}$. Exercises

Problem 2.1 Show that the function $f : \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \left\{ \begin{array}{c} x \sin(\frac{1}{x}) \text{ for } x \neq 0\\ 0 \text{ for } x = 0 \end{array} \right\},$$

is continuous but not smooth.

Problem 2.2 Let $0 < \varepsilon < \delta$. For every $x \in \mathbb{R}^n$, construct a function $f \in C^{\infty}(\mathbb{R}^n)$ such that f(y) = 1 for every $y \in B_{x,\varepsilon}$, and f(y) = 0 if $y \notin B_{x,\delta}$.

3 The Inverse Function Theorem

A smooth map $F : \mathbb{R}^n \to \mathbb{R}^m$ consists of m functions $f^1, ..., f^m$ in $C^{\infty}(\mathbb{R}^n)$ such that $F(x) = (f^1(x), ..., f^m(x))$ for every $x \in \mathbb{R}^n$. The matrix-valued function $(\partial f^i / \partial x^j)$ on \mathbb{R}^n is called called the *Jacobi matrix* of F. For each $x \in \mathbb{R}^n$, the derivative DF(x) of F at x is the linear map from \mathbb{R}^n to \mathbb{R}^m given by value at x of the Jacobi matrix of F. A number $M \in \mathbb{R}$ is an upper bound for DF(x) if $\|DF(x)u\| \leq M \|u\|$ for all $u \in \mathbb{R}^n$. The operator norm of the matrix DF(x) is the least upper bound $\|DF(x)\|$ of DF(x). which exists because the set of upper bounds for DF(x) is bounded from below by zero. Hence,

$$||DF(x)u|| \le ||DF(x)|| ||u||$$
(3)

for all $u \in \mathbb{R}^n$.

Proposition 4 If $F = (f^1, ..., f^m)$ is a smooth map from an open subset U of \mathbb{R}^n with values in an open subset V of \mathbb{R}^m , such that there exists a smooth map $H = (h^1, ..., h^n) : V \to U$ such that $F \circ H = id_U$ (the identity on U) and $H \circ F = id_V$, then m = n.

Proof. Differentiating equations $F \circ H = id_U$ and $H \circ F = id_V$ we get with the help of the Chain Rule

$$\sum_{k=1}^{m} \left(\frac{\partial f^{i}}{\partial x^{k}}\right)(x) \left(\frac{\partial h^{k}}{\partial y^{j}}\right)(y) = \delta_{j}^{i} \text{ and } \sum_{j=1}^{n} \left(\frac{\partial h^{k}}{\partial y^{j}}\right)(y) \left(\frac{\partial f^{j}}{\partial x^{i}}\right)(x) = \delta_{i}^{k},$$

where $x \in U$ let $y = F(x) \in V$, and

$$\delta_j^i = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$
(4)

is the *Kronecker symbol*. It follows that the Jacobi matrix of H is the inverse of the Jacobi matrix of F. Since an invertible matrix is square, it follows that m = n. \Box

The Inverse Function Theorem Let U be an open subset of \mathbb{R}^n and $F: U \to \mathbb{R}^n$ be smooth. If the derivative DF is invertible at a point $x_0 \in U$, then there exists an open neigbourhood V of x_0 contained in U such that F(V) is open in \mathbb{R}^n , the restriction $F_{|V|}$ of F to V is a one-to-one map of V onto F(V) with a smooth inverse $(F_{|V|})^{-1}: F(V) \to V$.

An important consequence of the Inverse Function Theorem is the Implicit Function Theorem stated below. Here, we use the canonical isomorphism

$$\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{n+m} : ((x^1, ..., x^n), (y^1, ..., y^m)) \longmapsto (x^1, ..., x^n, y^1, ..., y^m).$$

The Implicit Function Theorem Let (x_0, y_0) be a point in an open subset U of $\mathbb{R}^{n+m} \equiv \mathbb{R}^n \times \mathbb{R}^m$ and

$$F:U\rightarrow R^m:(x^1,...,x^n,y^1,...,y^m)\longmapsto (f^1(x,y),...,f^m(x,y))$$

be a smooth map such that

$$F(x_0, y_0) = 0$$
 and $\det(\partial f^a / \partial x^i)(x_0, y_0) \neq 0.$

Then, there exists a open neighbourhood V of x_0 in \mathbb{R}^n an open neighbourhood W of y_0 in \mathbb{R}^m such that $V \times W \subseteq U$ and there exists a smooth map $H: V \to W$ such that, for every $(x, y) \in V \times W$,

$$F(x, y) = 0$$
 if and only if $y = H(x)$.

4 Differential equations of first order

In this section we state existence, uniqueness and smooth dependence on initial data of a solution of a Cauchy problem

$$\dot{x}(t) = F(x(t)), \text{ and } x(t_0) = x_0,$$
(5)

where $t \mapsto x(t)$ is a curve in \mathbb{R}^n , $\dot{x}(t) = \frac{dx(t)}{dt}$ and $F \in C^{\infty}(\mathbb{R}^n)$.

Existence and uniqueness For each $x_0 \in \mathbb{R}^n$, there exists a maximal unique solution $x = f_{x_0}(t)$ of the Cauchy problem (5) defined in an open interval $(T_-(x_0), T_+(x_0))$ where $-\infty \leq T_-(x_0) < 0 < T_+(x_0) \leq \infty$. If

If
$$T_{-}(x_{0}) \neq -\infty$$
, then $||x(t)|| \to \infty$ as $t \to T_{-}(x_{0})$ from above.
If $T_{+}(x_{0}) \neq +\infty$, then $||x(t)|| \to \infty$ as $t \to T_{+}(x_{0})$ from below.

Smoothness For each $t \in (T_{-}(x_0), T_{+}(x_0))$, the function $x_0 \to f_{x_0}(t)$ is of class C^{∞} .