A variant of Wiener’s attack on RSA with small secret exponent

Andrej Dujella

Department of Mathematics, University of Zagreb
Bijenicka cesta 30, 10000 Zagreb, CROATIA
E-mail: duje@math.hr
URL: http://web.math.hr/~duje/

To speed up the RSA decryption one may try to use small secret decryption exponent d. The choice of a small d is especially interesting when there is a large difference in computing power between two communicating devices. However, in 1990, Wiener showed that if $d < n^{0.25}$, where $n = pq$ is the modulus of the cryptosystem, then there exist a polynomial time attack on the RSA. He showed that d is the denominator of some convergent p_m/q_m of the continued fraction expansion of e/n, and therefore d can be computed efficiently from the public key (n, e).

In 1997, Verheul and van Tilborg proposed an extension of Wiener’s attack that allows the RSA cryptosystem to be broken when d is a few bits longer than $n^{0.25}$. For $d > n^{0.25}$ their attack needs to do an exhaustive search for about $2t+8$ bits (under reasonable assumptions on involved partial convergents), where $t = \log_2(d/n^{0.25})$. In 2004, we introduced a slight modification of the Verheul and van Tilborg attack, based on Worley’s result on Diophantine approximations of the form $|\alpha - p/q| < c/q^2$, for a positive real number c.

In both mentioned extensions of Wiener’s attack, the candidates for the secret exponent are of the form $d = rq_{m+1} + sq_m$. We test all possibilities for d, and number of possibilities is roughly $(\text{number of possibilities for } r) \times (\text{number of possibilities for } s)$, which is $O(D^2)$, where $d = Dn^{1/4}$. There are two principal methods for testing:

1) compute p and q assuming d is correct guess;

2) test the congruence $(M^e)^d \equiv M \pmod{n}$, say for $M = 2$.

Here we present a new idea, which is to apply “meet-in-the-middle” to this second test. Let $2^{sq_{m+1}} \mod{n} = a$, $(2^{sq_m})^{-1} \mod{n} = b$. Then we test the congruence $a^r \equiv 2b^s \pmod{n}$. We can do it by computing $a^r \mod{n}$ for all r, sorting the list of results, and then computing $2b^s \mod{n}$ for each s one at a time, and checking if the result appears in the sorted list. This decrease the time complexity of testings phase to $O(D \log D)$ (with the space complexity $O(D)$).

We present also some variants of the proposed attack, which might be relevant for its practical implementation.
References

